Tetrahedron report number 454

Syntheses of Isoxazolinyl and Isoxazolidinyl Nucleoside Analogues

Shifeng Pan, Nduka M. Amankulor, and Kang Zhao*

29 Washington Place, Department of Chemistry, New York University, New York, NY 10003, USA

Received 8 January 1998

Contents

1.	Introduction		6587
2.	Notation Method		6589
3.	Isoxazolinyl and Isoxazolidinyl Nucleosides		6590
	3.1	Preparation of class C ₃ O ^a N ^e	6591
	3.2	Preparation of class C ₃ O ^c N ^d	6593
	3.3	Preparation of C ₃ O ^c N ^d -2H (isoxazolines)	6595
4.	Polycyclic Isoxazolidine Nucleosides		6596
5.	Conclusion		6597
	5.1	Chemistry	6597
	5.2	Biological evaluation	6598

1. INTRODUCTION

Nucleosides have been parent structures in the rational design and development of novel antiviral drugs (Figure 1). Modified nucleoside analogues inhibit viral polymerases by either as DNA/RNA chain terminators or as competitive inhibitors. The first generation of nucleoside antiviral analogues is derived from substituent manipulation of the ribose parent ring. The basic ability to inhibit viral polymerases is achieved (in the case of these first generation drugs) by the removal of the hydroxyl groups from 2',3'-positions of the ribose ring structure. Ribose derived nucleosides lacking the 2',3'-hydroxyl groups are generally known as dideoxynucleosides, hence the abbreviation (ddN). Since the derived chemical structures are useful for the inhibition of viral DNA or RNA synthesis, an enormous number of compounds with various substituents can be investigated as possible antiviral agents. Of these, some prominent first generation drugs include: ddC (1a),1,2 ddl (1b),1,2 AZT (2a) (R = Me),1,3 AZddU (2b) (R = H),1,3 and d4T (3),1,4 Recently, promising results

have also been observed for the corresponding L-isomers and L-FMAU (2'-fluoro-5-methyl-β-L-arabinofuranosyluracil) 4 is a representative example of this class.^{1,5}

Figure 1: Ribose derivatives as first-generation anti-viral agents.

A related strategy used in the design of nucleoside analogues, has involved manipulation of the ribose ring size (Figure 2), as well as subsequent manipulation of some substituents on the corresponding rings. In addition to the above-mentioned ribose (five-membered) ring structure, 3-, 4-, and 6-membered rings have been constructed and examined for possible antiviral activities. Interesting antiviral and anticancer compounds have been reported from those structures 5-7.6-8 Needless to say, much current work in the discovery of antiviral agents is targeted on manipulations of nucleoside backbones 5-7. A very interesting variation on the theme of nucleosides is the acyclic structure 8, which, aside from the exclusion of a ring structure, includes other important structural components of nucleosides and their analogues. 19-h,9 In fact, some of these compounds have proved quite successful as antiviral agents. Several representative acyclic antiviral agents such as acyclovir, ganciclovir, and famciclovir are essentially derived from 8.10

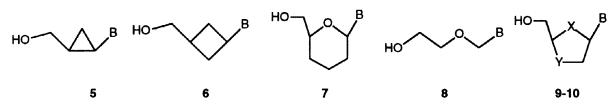


Figure 2: Cyclic, acyclic, and heteroatom-containing nucleoside analogues.

Another notable class of compounds includes analogues with diheteroatom-containing sugar moieties **9-10** (Figure 2). Remarkable levels of anti-HIV and anti-HBV potency have been observed in 1,3-dioxolane **9** (X = Y = O)¹¹ and 1,3-oxathiolane nucleosides **10** (X = O, Y = S).^{12,13} Furthermore, some L-(-)- enantiomers of **10**, of which 3TC [(-)-2'-deoxy-3'-thiacytidine] might well be the most prominent, exhibit remarkable antiviral capabilities.¹² Some extensive reports have detailed the synthesis of diheteroatom-containing oxathiolane and dioxolane moieties.¹¹⁻¹³

Since some success in the synthesis of antiviral agents has resulted from the manipulation of oxathiolane and dioxolane nucleoside systems, it is of interest to find similar nucleoside systems in which the heteroatoms are nitrogen and oxygen. In this regard, this review attempts to cover reports of nitrogen-containing nucleoside analogues, with particular emphasis on the synthesis of

isoxazolidinyl and isoxazolinyl nucleosides. We include all pertinent reports published before January 1998.

2. NOTATION METHOD

Here, we propose a notation method for the structural description of nucleoside analogues. This simple and efficient method will cover all the nucleoside ring structures and the use of this system should facilitate the discussion of structural features. Although this notation method enable adequate visualization of these nucleoside analogues without further reference to figures, it shall be combined with the traditional nomenclature for the flavor of nucleoside chemistry.

In our method, the structure of 2',3'-dideoxyribose nucleoside analogue 2 will be abbreviated into C_4O^a (Figure 3). The notation C_4O indicates a five-membered ring compound with one heteroatom (in this case, oxygen) and four carbons in the ring. Superscripts (a-e) will be used to further differentiate the position of the heteroatom. As such, superscript (a) indicates a heteroatom between the hydroxymethyl and the base, (b) would theoretically represent a heteroatom connected to the base, and so on. Compounds 11-13 will, therefore, be written as C_4X^a , C_4X^c , and C_4X^d , respectively.

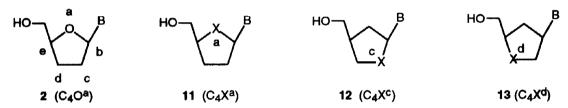


Figure 3: Notations for the naming of cyclic nucleoside analogues.

This notation has several advantages: (1) Structures can be understood without structural formulas. For example, structure C₄O^a or even "O^a" means furan compound 2. Class C₅ may be used as a point of reference, and refers to the corresponding cyclopentane derivatives. (2) All cyclic nucleoside analogues can be divided into classes and subclasses. For example, class 11 (C₄X^a) can be further divided into the subclasses C₄O^a, C₄S^a, and C₄N^a. (3) This notation can be used to group compounds together for prediction of structural stabilities. This last point is validated by the fact that nitrogen containing compounds 14-20 exhibit drastically different levels of stability (Figure 4). For example, compound 18 is unlikely to be stable due to the presence of a carbinolamine moiety.

Figure 4: Nitrogen-containing nucleoside analogues (E = electron withdrawing groups; R = alkyl groups).

The introduction of only one nitrogen atom into the 5-membered ring (Figure 4) can result in the generation of groups of compounds such as 14-18 with backbones C₄Na, C₄Nb, C₄Nc, C₄Nd, and C₄Na. Several groups have focused on the construction of derivatives of compound 14, and some of these derivatives show interesting antiviral activities. A few papers have been reported on the synthesis of 15 and some of its derivatives earlier in this decade. Literature searches reveal that nothing is known about classes 16 (C₄Nc) and 18 (C₄Na), and very little is reported about compounds of class 17 (C₄Nd). A few structural manipulations result in ring systems 19-20 (C₃OaNd and C₃SaNd). Paying particular attention to compounds such as 19-20, it would seem quite probable that the instability of these compounds results from the unstable carbinolamine like structures O-C-N or S-C-N. Consequently, the addition of nitrogen as a second heteroatom has proven particularly difficult for these ring systems. Since synthesis of 14-20 is a problem, attempts to determine the anti-viral activity of this class of compounds have been curtailed by a shortage of molecules for testing purposes.

3. ISOXAZOLINYL AND ISOXAZOLIDINYL NUCLEOSIDES

Unlike compounds 19 (C₃O^aN^d) and 20 (C₃S^aN^d), N-O containing compounds feature relatively stable hydroxylamine-type bond structures. Generally, these N-O containing five-membered ring derivatives are known as isoxazolidines (21-22, 24-25) and isoxazolines (23). These compounds, which can be prepared by taking advantage of the unique properties of hydroxylamine moieties, can be divided into five categories such as in Figure 5. In spite of the wealth of information that exists on

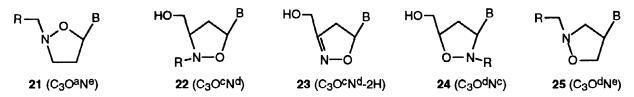


Figure 5: Isoxazolinyl and isoxazolidinyl backbones 21-25.

the construction of N-O bond structures in chemical syntheses, the area of isoxazolinyl and isoxazolidinyl nucleosides remains poorly investigated. However, it should be noted that a variety of nucleoside structures containing N-O bonds have been constructed for exploratory studies to provide strategies for potential drug development. Comprehensive literature searches reveal that compounds belonging to classes 21-23 have been prepared through a limited number of methods. Furthermore, virtually nothing in the way of syntheses is known about compounds of classes 24-25. Consequently, the information known about the ability of isoxazolidines to function as antiviral agents is by no means comprehensive. Compounds of class 21 (C₃O^aN^e) represent isoxazolidine nucleosides, and have been synthesized by Tronchet et. al¹⁸ and Sindona et. al.¹⁹ Isoxazolidines of class 22 (C₃O^cN^d) have been synthesized by Zhao et. al,²⁰ and also by Romeo et. al.²¹ Finally, isoxazolines belonging to class 23 (C₃O^cN^d-2H) have been synthesized by Zhao and his co-workers with good enantioselectivity.²² Below, we summarize some synthetic pathways utilized in the

preparation of these three classes of nucleoside analogues. In addition, we attempt to point out some chemically interesting components which are unique to each of these syntheses.

3.1 Preparation of Class C₃O^aN^a.

In 1992, Tronchet's group reported the first synthesis of nucleoside analogues of class 21 (Scheme 1). 18a Specifically, the featured reaction in their synthesis involved the 1,3-dipolar cycloaddition of simple nitrones 26a-b with vinyl acetate 27a and imidazole 27b. Subsequent base condensation of products 28a-d with silylated thymine in the presence of trimethylsilyl triflate results in the formation of isoxazolidines 21a and 21b. In general, they found that the cycloaddition proceeded with relatively good regioselectivity, forming C₃O^aN^e nucleoside ring structures. A pair of tran and cis isomers 21a-b were observed. The structural analyses regarding the stabilities of the formed isomers are interesting. Tronchet found that the cis isomers are more stable than the trans. Since free rotation about the nitrogen atom is expected, these results seem a bit unexpected. Tronchet and co-worker's were, in fact, able to show the stability of the cis-derived isomers by calculating the relative stabilities of the cis and trans isomers using AM1 Hamiltonian precise mode calculations. In the case of 21b, an energy difference of 2.6 kcal/mol was calculated in favor of the cis isomers. Tronchet et. al argue that this barrier sufficiently explains the predominance of the cis isomer observed in the case of 21b. The replacement of a carbon atom by nitrogen is particularly interesting in these compounds. Since the nitrogen atom allows for relatively facile inversions (about nitrogen) precluded by carbon atoms, it will be interesting to see the structural impact of this feature in seeking out biologically active compounds of this class.

Scheme 1: Tronchet's 1,3 dipolar cycloaddition approach to isoxazolidines.

The method employed by Tronchet and co-workers, as outlined above, has been reinvestigated by Sindona's group and reported in 1996.¹⁹ Their synthesis of other non-hydroxylated derivatives of compound **21** takes advantage of direct 1,3-dipolar cycloadditions of nitrones **26b-c** with vinylthymine **27c** (Scheme 2). Again, good regioselectivity is observed here. This step is then followed by hydrolysis of **21c** to afford **21d**. Essentially, their effort constitutes a one-pot synthesis of C₃O^aN^e derivatives. Two points are in order here. First, in the case of Sindona's synthesis, the glycosidic bond survives acidic hydrolysis of a THP moiety. Sindona and co-workers suggest that the glycone might be protonated under acidic conditions, thereby enhancing the stability of the glycosidic bond. Secondly, compound **21d** is water soluble, a fact that might prove useful in future drug design. If derivatives of these compounds are to be synthesized, the first point should prove indispensable.

Scheme 2: A one-pot synthesis of isoxazolidines.

The synthesis of *N*-hydroxymethyl derivatives of isoxazolidines 21 (R = OH) have not been reported using the 1,3-dipolar cycloaddition methodologies, perhaps due to the unstable aminal structural elements which were pointed out earlier. This point is crucial. Since the triphosphorylation of the hydroxymethyl group is required for incorporation into elongating DNA chains, the need for a hydroxymethyl mimic is warranted. Tronchet et. all have synthesized compounds such as 21f, where a hydroxyl group is one carbon atom added from its usual position (Scheme 3).^{18a} Briefly, the synthetic steps utilized here are as follows: base condensation of 28e followed by deprotection yields 21f.

Scheme 3: Synthesis of C₃O^aN^e derivatives with potential tri-phosphorylation sites.

Scheme 4 shows the synthesis of substituted isoxazolidinyl thymine derivatives as explained above. Elaborated nitrones can be used as starting materials to prepare substituted isoxazolidines such as 21g-i. The $\alpha:\beta$ ratio of compounds 21g-i is 2:1 after base condensation with silylated thymine. Although compounds 21j-i exhibit no antiviral activity, they represent the first attempt to substitute hydroxyl groups onto the isoxazolidine ring. If antiviral biological activity is to be observed with these compounds, these hydroxyl groups will almost certainly be needed. 18b

Scheme 4: Synthesis of substituted C₃O^aN^e derivatives.

To conclude, several C₃O^aN^e derivatives have been synthesized by 1,3-dipolar cycloaddition methods. Some noteworthy points regarding these derivatives include their stability under mild acidic and basic conditions. However, the poor levels of stereoselectivity observed upon base

condensation with 21g-i may call for alternative pathways during future syntheses of the above compounds.

3.2 Preparation of Class C₃O^cN^d.

In 1995, Zhao and co-workers reported the synthesis of class $C_3O^cN^d$ (Scheme 5).^{20a} These compounds, unlike the existing derivatives of 21, contain hydroxymethyl groups which are closely analogous to those found on ribose. In short, they were the first isoxazolidines whose hydroxymethyl group was directly analogous to the ribose parent-structure of nucleosides. The synthetic pathway here involves the key Michael addition of *N*-methylhydroxylamine onto α,β -unsaturated ester 29 to form 30. Subsequent DIBAL reduction and acetyl protection gives the intermediate 31a. Condensation with silylated-thymine in the presence of TMSOTf as a catalyst afforded the TPS-protected intermediate which was directly converted to the desired product 22a (B = thymine).

RO CO₂Et MeNHOH.HCI
$$\rightarrow$$
 NO CO₂Et \rightarrow 1) DIBAL \rightarrow NO CO₂Et \rightarrow NO Me \rightarrow NO Me

Scheme 5: A diastereoselective synthesis of the C₃O^cN^d class of isoxazolidines.

It is appropriate to point out that the Lewis acid-promoted coupling (Et₂O.BF₃ or TMSOTf) of acetate **31a** and TMS-protected nucleoside bases gives rise to the *cis* compounds **22a** primarily. However, much higher levels of diastereoselectivity is observed when TMSOTf is used as a Lewis acid. Remarkably, the high levels of stereoselectivity observed here proceed in the absence of metal chelation. These theoretically intriguing results set the stage for preparation of various isoxazolidine nucleosides. The isoxazolidine derivatives can be prepared in a) good yield, and perhaps more importantly, b) good diastereoselectivity.

Scheme 6: A [3+2] cycloaddition approach to isoxazolines of class C₃O^CN^d.

Romeo et. al have used dipolar addition reactions to prepare thymine and fluorouracil isoxazolidines 22f-i (Scheme 6).²¹ Nitrones containing electron withdrawing groups, as in 32a-d, can be utilized in [3+2] cycloadditions with vinyl acetate to give a mixture of diastereomeric products 31. Subsequent base condensation yields isoxazolidines 22b-e. The synthetic sequence is completed by reduction of 22b-e with sodium borohydride, producing target isoxazolidines 22f-i. Since ketones can be used as the starting materials for the nitrone preparation, R' can be either

hydrogen or alkyl groups. While this reaction is facile and gives rise to multi-substituted C₃O^cN^d, base condensation here is not very diastereoselective. Unlike compound 31a (Scheme 5), which produced primarily *cis* products upon condensation, compounds 31b-e (Scheme 6) gave a mixture of *cis:trans* products 22b-e. The regioselectivity of the cycloaddition, however, is quite good.

Following their early success with Michael additions unto unsaturated esters, Zhao and coworkers embarked upon a diastereoselective and enantioselective synthesis of pure isoxazolidine Lenantiomers 22j-k (Scheme 7).20b The enantioselectivity of this process stems from the enantiomerically pure synthon 33. This lactone undergoes a trans Michael reaction with Nmethylhydroxylamine to give the corresponding Michael adduct. This adduct is then protected, yielding 34. Following this protection, a set of synthetic transformations, namely, DIBAL reduction, TBAF deprotection, acetal formation, acetate protection, and base condensation, results in the synthesis of intermediate 31f. Notably, the base condensation step (Scheme 7) yields cis products exclusively and, as observed earlier, the remarkably high levels of stereoselectivity present here proceeds in the absence of metal chelation. The conversion of 31f to the desired L-compound 22j-k is effected by hydrolysis, oxidation with NaIO₄, and reduction with NaBH₄. The synthetic utility of this method is particularly obvious when three points are considered. Regarding the transformation of intermediate 31f to final product 22k-j, it should be noted that a) the anomeric position is stable under the acidic conditions used to hydrolyze the acetal; b) the N-O bond in 31f survives oxidation with sodium periodate; and c) the aldehyde formed upon oxidation (not shown) can be captured with a variety of Grignard reagents, leading to the production of isoxazolidines which contain alkyl groups as opposed to hydrogen. The introduction of alkyl groups will result in the formation of a new stereogenic center which provides an additional opportunity to obtain two possible isomers for the evaluation of antiviral activity.

Scheme 7: Enantioselective synthesis of L-isoxazolidines 22j-k.

With the synthesis of L-isoxazolidines 22j-k complete, D-enantiomers could theoretically be prepared from the alternative isomer of 33, which would require a long synthetic sequence. Instead, the readily available unsaturated ester 35 was recruited in the scheme for the purpose of Michael addition (Scheme 8).^{20c} The *syn*-adduct 36 was produced after metal-catalyzed cyclization with zinc chloride. The dimethyl dioxolane moiety was presumably responsible for the *syn* Michael addition of N-methylhydroxylamine to 35. Interestingly, the olefin geometry of 35 did not affect the predominance of the *syn* isomer 36, and it was reported that both the Z- and E- olefins give the

same product 36.20c Formation of a variety of D-isoxazolidines 221-p from 36 utilizes reactions which have been described above (Scheme 7).

Scheme 8: Enantioselective synthesis of D-isoxazolidines 221-p.

3.3 Preparation of C₃O^cN^d-2H (Isoxazolines).

The racemic isoxazoline compounds **23a-e** were successfully prepared by employing a [3+2] dipolar cycloaddition of *N*-vinyl-bases with appropriately protected nitrile oxides (Scheme 9).^{22a-b} For example, the synthetic sequence begins with the use of *N*-vinyl-6-chloropurine **27f**, which was readily prepared after minor modifications of the Ts'o procedure. Compound **27f** readily undergoes a regioselective [2+3] cycloaddition with the THPO(CH₂)₂NO₂-derived nitrile oxide to form **38d**. Treatment of **38d** with Dowex 50 (H+) in methanol affords the desired product **23d**. It should be noted that the glycosidic bond was surprisingly stable under this acidic condition. Conversion of **23d** to compound **23e** was achieved using sodium azide in ethanol at 80°C, followed by triphenylphosphine reduction. The hydrolysis of azide reduction intermediate requires its treatment with aqueous acetic acid at 100 °C and the final product **23e** can be obtained in 51% yield.

Scheme 9: The 1,3-dipolar cycloaddition approach to racemic isoxazolines.

These investigations have essentially laid the groundwork for preparation of the corresponding phosphonate analogues 23f-j (Scheme 10).^{22b} The synthesis of 23f-j commences with NCS oxidation of oxime 39 in pyridine, yielding 40. The phosphonate moiety survives the steps of oxime formation and oxidation. Cycloaddition with vinyl bases under heat affords the nucleoside phosphonates 23f-j. The cycloaddition methods are very convenient for the preparation of isoxazolines since the nitrile oxide starting materials can be prepared by either the dehydration of nitro compounds, or oxidation of oximes. The regiochemistry of additions is generally controlled. However, the cycloaddition step lacks enantioselectivity. This fact may hamper the use of cycloaddition methods in the preparation of 23 (class C₃O^cN^d-2H).

Scheme 10: Synthesis of isoxazoline nucleoside phosphonates.

A route to the enantioselective syntheses of these isoxazolines 23 has been reported (Scheme 11). ^{22c} Nucleoside analogues 41, in which the nitrogen atom is substituted with a *p*-methoxybenzyl group (pMB), were prepared for the development of oxidative methods to selectively remove the alkyl group on the nitrogen atom. While oxidative removal of the pMB group from *nitrogen* atoms is, for the most part, uncommon, it is well documented that the pMB group can be used as a protecting group for alcohols and removed by oxidative cleavage with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). It is found that compounds 41a (B = purine derivatives) reacted with DDQ/CH₂Cl₂/H₂O in the presence of a catalytic amount of triethylamine to afford products 42a, which was converted to the desired adenine product. In addition, the cytidine derivative 41b (B = cytosine) can be similarly obtained. This approach offers the only effective method that can be used to allow access to a variety of optically active isoxazolines 23, including the corresponding L-isomers, which are otherwise difficult to obtain. The use of this synthetic scheme for the preparation of 23k-I allows for potentially divergent syntheses in which previously prepared isoxazolidines can be transformed to isoxazolines, circumventing the cycloaddition methods which were described previously.

Scheme 11: Enantioselective synthesis of isoxazolines 23.

4. POLYCYCLIC ISOXAZOLIDINE NUCLEOSIDES

In addition to the above-mentioned syntheses, some recent reports document the preparation of polycyclic nucleoside derivatives **43-51** (Figures 6-7). Compound **43** is the product of a hydroxylamine-substituted C₄O^a compound,^{23a} which was prepared by the Mitsunobu reaction.^{23b} Generally, other compounds are approached by using [3+2] cycloaddition methods.²³⁻²⁵ The sites of coupling are indicated by dashes. These structures are interesting since, unlike the nucleoside analogues described above, these polycylic analogues may resemble TSAO {[2',5'-bis-*O*-(*tert*-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide)]-β-D-pentofuranosyl} analogs

52.26 With the exception of few examples, only thymine-containing derivatives 43-51 have been prepared.²³⁻²⁵ Since this is the case, it is not yet clear whether any of these polycyclic compounds can act as anti-viral agents. Certainly, one should expect to see the synthesis of more polycyclic derivatives in the future.

Figure 6: Bicyclic isoxazolidine nucleosides.

Figure 7: Other selected cyclic nucleosides.

5. CONCLUSION

5.1 Chemistry.

A number of *N-O* containing nucleosides have been synthesized. Two major methods have been utilized in these syntheses. Generally, these methods are: a) [3+2] dipolar cycloaddition and b) Michael addition. Investigations have predominantly focused on the preparation of isoxazolidinyl and isoxazolinyl nucleosides utilizing a [3+2]-dipolar cycloaddition of various nitrones or nitrile oxides as a cornerstone reaction. Cycloadditions offer an efficient route for the synthesis of a variety of nucleoside analogues for the screening of their antiviral activities. The disadvantage of this method is that the synthetic efficacy in the preparation of isoxazolines and isoxazolidines is hampered by the poor enantio- or diastereoselectivities observed during cycloaddition.

On the other hand, Michael-addition methods which couple simple hydroxylamines to unsaturated lactones and esters effect highly stereoselective syntheses of isoxazolidines and even isoxazolines. In short, the Michael addition method can be used for the *enantioselective* preparation of *N-O* nucleosides. These preliminary results have indicated that these derivatives are quite stable under a variety of reaction conditions, including acid hydrolysis, oxidation, and reduction. It will require some effort to develop other methods which may result in alternative approaches to facile preparation of new derivatives **21-25**.

5.2 Biological Evaluation.

Since isoxazolidine nucleosides such as 22 can be *N*-alkyl substituted, it is believed that the underlying properties of these nucleosides will present the unique opportunity for structural modification of lead compounds of class C₃O^cN^d. It would be interesting to see what sort of structural requirements are needed for high affinity to viral polymerases. Although it has not been reported that this class of compounds show antiviral activity, it is certainly expected that more isoxazoline derivatives will be prepared for biological studies. Alternatively, compounds 22 may also provide leads in the discovery of anticancer agents which function in similar ways as some of the compounds described in this report.

Regarding the class of isoxazoline nucleosides 23, biological tests have revealed moderate anti-HIV potency for a mixture of D- and L-isomers. It would be interesting to see whether isoxazoline derivatives can be utilized as potent anti-viral agents in the future. So far, modification of the bases, and inclusion of both phosphonate and hydroxymethyl derivatives have not proven highly effective. Strictly speaking, structural modifications at the nitrogen atom in the nucleoside ring of isoxazolines are ostensibly less numerous than modifications of isoxazolidines. However, the modifications that have been made so far do not exhaust the possible changes that can be made to improve the potency of isoxazolines.

Finally, regarding isoxazolidines **24-25** of classes C₃O^dN^c and C₃O^dN^e, it is too premature to make judgments regarding the potential use of these derivatives as antiviral agents since preparations of these compounds are not reported.

Acknowledgments: We acknowledge financial support from the NSF Faculty Early Career Development Program, the American Cancer Society, the New York University Technology Transfer Fund, and the donors of the Petroleum Research Fund, administered by the American Chemical Society. SP acknowledges the New York University MacCracken Fellowship.

REFERENCES

- For selected recent reviews, see: (a) Huryn, D. M.; Okabe, M. Chem. Rev. 1992, 92, 1745. (b) De Clercq, E. Ann. New York Acad. Sci. 1994, 438. (c) Nair, V.; Jahnke, T. S. Antimicrob. Agents Chemother. 1995, 39, 1017. (d) Wilson, L. J.; Hager, M. W.; El-Kattan, Y. A.; Liotta, D. C. Synthesis 1995, 1465. (e) De Clercq, E. J. Med. Chem. 1995, 38, 2491. (f) El Ashry, E. S. H.; El Kilany, Y. Adv. Heterocycl. Chem. 1996, 67, 391. (g) El Ashry, E. S. H.; El Kilany, Y. Adv. Heterocycl. Chem. 1997, 68, 1. (h) El Ashry, E. S. H.; El Kilany, Y. Adv. Heterocycl. Chem. 1998, 69, 129.
- (a) Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; St. Clair, M. H.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. *Proc. Natl. Acad. Sci. U. S. A.* 1985, 82, 7096. (b) Mitsuya, H.; Broder, S. *Proc. Natl. Acad. Sci. U. S. A.* 1986, 83, 1911.
- 3. Lin, T.-S.; Guo, J.-Y.; Schinazi, R. F.; Chu, C. K.; Xiang, J.-N.; Prusoff, W. H. *J. Med. Chem.* **1988**, *31*, 336.

- 4. Hamamoto, Y.; Nakashima, H.; Matsui, T.; Matsuda, A.; Ueda, T.; Yamamoto, N. *Antimicrob. Agents Chemother.* **1987**, *31*, 907.
- 5. (a) Chu, C. K.; Ma, T.; Shanmuganathan, K.; Wang, C.; Xiang, Y.; Pai, S. B.; Yao, G.-Q.; Sammadossi, J.-P.; Cheng, Y.C. *Antimicrob. Agents Chemother.* 1995, 39, 979. (b) Pai, S. B.; Liu, S.H.; Zhu, Y.-L.; Chu, C. K.; Cheng, Y.C. *Antimicrob. Agents Chemother.* 1996, 40, 380.
- For selected examples of cyclopropane systems, see: (a) Ashton, W. T.; Meurer, L. C.; Cantone, C. L.; Field, A. K.; Hannah, J.; Karkas, J. D.; Liou, R.; Patel, G. F.; Perry, H. C.; Wagner, A. F.; Walton, E.; Tolman, R. L. J. Med. Chem. 1988, 31, 2304. (b) Nishiyama, S.; Ueki, S.; Watanabe, T.; Yamamura, S.; Kato, K.; Takita, T. Tetrahedron Lett. 1991, 32, 2141. (c) Katagiri, N.; Sato, H.; Kaneko, C. Chem. Pharm. Bull. 1990, 38, 3184. (d) Mévellec, L.; Huet, F. Tetrahedron Lett. 1995, 36, 7441. (e) Csuk, R.; van Scholz, Y. Tetrahedron 1996, 52, 6383. (f) Lee, M. G.; Du, J. F.; Chun, M. W.; Chu, C. K. J. Org. Chem. 1997, 62, 1991.
- For selected examples of cyclobutane systems, see: (a) Slusarchyk, W. A.; Young, M. G.; Bisacchi, G. S.; Hockstein, D. R.; Zahler, R. Tetrahedron Lett. 1989, 30, 6453. (b) Honjo, M.; Maruyama, T.; Sato, Y.; Horii, T. Chem. Pharm. Bull. 1989, 37, 1413. (c) Norbeck, D. W.; Kern, E.; Hayashi, S.; Rosenbrook, W.; Sham, H.; Herrin, T.; Plattner, J. J.; Erickson, J.; Clement, J.; Swanson, R.; Shipkowitz, N.; Hardy, D.; Marsh, K.; Arnett, G.; Shannon, W.; Broder, S.; Mitsuya, H. J. Med. Chem. 1990, 33, 1281. (d) Slusarchyk, W. A.; Bisacchi, G. S.; Field, A. K.; Hockstein, D. R.; Jacobs, G. A.; McGeever-Rubin, B.; Tino, J. A.; Tuomari, A. V.; Yamanaka, G. A.; Young, M. G.; Zahler, R. J. Med. Chem. 1992, 35, 1799. (e) Maruyama, T.; Hanai, Y.; Sato, Y.; Snoeck, R.; Andrei, G.; Hosoya, M.; Balzarini, J.; De Clercq, E. Chem. Pharm. Bull. 1993, 41, 516. (f) Fernández, F.; López, M. C.; Hergueta, A. R. Nucleosides Nucleotides 1995, 14, 357. (g) Gharbaoui, T.; Legraverend, M.; Ludwig, O.; Bisagni, E.; Aubertin, A.-M.; Chertanova, L. Tetrahedron 1995, 51, 1641. (h) Kikuchi, Y.; Nishiyama, S.; Yamamura, S.; Kato, K.; Fujiwara, S.; Umezawa, K.; Terada, Y. Bioorg. Med. Chem. Lett. 1996, 6, 1897. (i) Mévellec, L.; Huet, F. Tetrahedron 1997, 53, 5797.
- 8. (a) Doboszewski, B.; Herdewijn, P. *Tetrahedron* **1996**, *52*, 1651. (b) Doboszewski, B.; De Winter, H.; van Aerschot, A.; Herdewijn, P. *Tetrahedron* **1995**, *51*, 12319. (c) Augustyns, K.; Rozenski, J.; van Aerschot, A.; Janssen, G.; Herdewijn, P. *J. Org. Chem.* **1993**, *58*, 2977.
- For selected reviews and examples, see: (a) Chu, C. K.; Cutler, S. J. J. Heterocyl. Chem. 1986, 23, 289 and references therein. (b) Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R. T.; Balzarini, J.; De Clereq, E. J. Med. Chem. 1989, 32, 2507. (c) Ubasawa, M.; Takashima, H.; Sekiya, K. Chem. Pharm. Bull. 1995, 43, 142. (d) Hossain, N.; Rozenski, J.; De Clercq, E.; Herdewijn, P. Tetrahedron 1996, 52, 13655. (e) Beauchamp, L. M.; Tuttle, J. V.; Rodriguez, M. E.; Sznaidman, M. L. J. Med. Chem. 1996, 39, 949. (f) El-Subbagh, H. I.; Racha, S.; Abushanab. E.; Panzica, R. P. J. Org. Chem. 1996, 61, 890. (g) Saluja, S.; Zou, R.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1996, 39, 881. (h) Danel, K.; Larsen, E.; Pedersen, E. B.; Vestergaard, B. F.; Nielsen, C. J. Med. Chem. 1996, 39, 2427. (i) Balzarini, J.; Vahlenkamp, T.; Egberink, H.; Hartmann, K.; Witvrouw, M.; Pannecouque, C.; Casara, P.; Navé, J.-F.; De Clercq, E. Antimicrob. Agents Chemother. 1997, 41, 611. (j) Gómez, J. A.;

- Campos, J.; Marchal, J. A.; Trujillo, M. A.; Melguizo, C.; Prados, J.; Gallo, M. A.; Aranega, A.; Espinosa, A. *Tetrahedron* 1997, *53*, 7319.
- (a) Schaeffer, H. J.; Beauchamp, L.; de Miranda, P.; Elion, G. B.; Bauer, D. J.; Collins, P. Nature 1978, 272, 583. (b) Ogilvie, K. K.; Cheriyan, U. O.; Radatus, B. K.; Smith, K. O.; Galloway, K. S.; Kennell, W. L. Can. J. Chem. 1982, 60, 3005. (c) Field, A. K.; Davies, M. E.; DeWitt, C.; Perry, H. C.; Liou, R.; Germershausen, J.; Karkas, J. D.; Ashton, W. T.; Johnston, D. B. R.; Tolman, R. L. Proc. Natl. Acad. Sci. USA, 1983, 80, 4139. (d) Harnden, M. R.; Jarvest, R. L.; Boyd, M. R.; Sutton, D.; Vere Hodge, R. A. J. Med. Chem. 1989, 32, 1738.
- For selected examples of dioxolane nucleosides, see: (a) Norbeck, D. W.; Spanton, S.; Broder, S.; Mitsuya, H. Tetrahedron Lett. 1989, 30, 6263. (b) Choi, W.-B.; Wilson, L. J.; Yeola, S.; Liotta, D. C.; Schinazi, R. F. J. Am. Chem. Soc. 1991, 113, 9377. (c) Kim, H. O.; Schinazi, R. F.; Shanmuganathan, K.; Jeong, L. S.; Beach, J. W.; Nampalli, S.; Cannon, D. L.; Chu, C. K. J. Med. Chem. 1993, 36, 519. (d) Evans, C. A.; Dixit, D. M.; Siddiqui, M. A.; Jin, H.; Allan Tse, H. L.; Cimpoia, A.; Bednarski, K.; Breining, T.; Mansour, T. S. Tetrahedron: Asymmetry 1993, 4, 2319. (e) Wilson, L. J.; Choi, W. B.; Spurling, T.; Liotta, D. C.; Schinazi, R. F.; Cannon, D.; Painter, G. R.; St. Clair, M.; Furman, P. A. Bioorg. Med. Chem. Lett. 1993, 3, 169. (f) Bednarski, K.; Dixit, D. M.; Mansour, T. S.; Colman, S. G.; Walcott, S. M.; Ashman, C. Bioorg. Med. Chem. Lett. 1995, 5, 1741. (g) Grove, K. L.; Guo, X.; Liu, S.-H.; Gao, Z.; Chu, C. K.; Cheng, Y.-C. Cancer Res. 1995, 55, 3008. (h) Liang, C.; Lee, D. W.; Newton, M. G.; Chu, C. K. J. Org. Chem. 1995, 60, 1546. (i) Chen, H.; Boudinot, F. D.; Chu, C. K.; McClure, H. M.; Schinazi, R. F. Antimicrob. Agents Chemother. 1996, 40, 2332. (j) Brånalt, J.; Kvarnström. I.; Classon, B.; Samuelsson, B. J. Org. Chem. 1996, 61, 3599.
- 12. For selected examples of 3TC, see: (a) Belleau, B.; Dixit, D.; Nguyen-Ga, N.; Kraus, J.-L. International conference on Aids, Montreal, Canada, 1989, TCOI, 515. (b) Beach, J. W.; Jeong, L. S.; Alves, A. J.; Pohl, D.; Kim, H. O.; Chang, C.-N.; Doong, S.-L.; Schinazi, R. F.; Cheng, Y.-C.; Chu, C. K. J. Org. Chem. 1992, 57, 2217. (c) Schinazi, R. F.; Chu, C. K.; Peck, A.; McMillan, A.; Mathis, R.; Cannon, D.; Jeong, L.-S.; Beach, J. W.; Choi, W.-B.; Yeola, S.; Liotta, D. C. Antimicrob. Agents Chemother. 1992, 36, 672. (d) Coates, J. A. V.; Cammack, N.; Jenkinson, H. J.; Mutton, I. M.; Pearson, B. A.; Storer, R.; Cameron, J. M.; Penn, C. R. Antimicrob. Agents Chemother. 1992, 36, 202. (e) Hart, G. J.; Orr, D. C.; Penn, C. R.; Figueiredo, H. T.; Gray, N. M.; Boehme, R. E.; Cameron, J. M. Antimicrob. Agents Chemother. 1992, 36, 1688. (f) Humber, D. C.; Jones, M. F.; Payne, J. J.; Ramsay, M. V. J.; Zacharie, B.; Jin, H.; Siddiqui, A.; Evans, C. A.; Allan Tse, H. L.; Mansour, T. S. Tetrahedron Lett. 1992, 33, 4625. (g) Jeong, L. S.; Schinazi, R. F.; Beach, J. W.; Kim, H. O.; Nampalli, S.; Shanmuganathan, K.; Alves, A. J.; McMillan, A.; Chu, C. K.; Mathis, R. J. Med. Chem. 1993, 36, 181. (h) Jin, H.; Siddiqui, M. A.; Evans, C. A.; Allan Tse, H. L.; Mansour, T. S.; Goodyear, M. D.; Ravenscroft, P.; Beels, C. D. J. Org. Chem. 1995, 60, 2621. (i) Dwyer, O. Synlett 1995, 1163. (j) Camplo, M.; Charvey-Faury, A. S.; Borel, C.; Turin, F.; Hantz, O.; Traubaud, C.; Niddam, V.; Mourier, N.; Graciet, J. C. Eur. J. Med. Chem. 1996, 31, 539. (k) Smith, R. A.; Remington, K. M.; Lloyd, R. M.; Schinazi, R. F.; North, T. W. J. Virol. 1997, 71, 2357.

- For selected examples of other oxathiolane nucleosides, see: (a) Doong, S.-L.; Tsai, C.-H.; Schinazi, R. F.; Liotta, D. C.; Cheng, Y.-C. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8495. (b) Schinazi, R. F.; Lloyd, Jr. R. M.; Nguyen, M.-H.; Cannon, D. L.; McMillan, A.; Ilksoy, N.; Chu, C. K.; Liotta, D. C.; Bazmi, H. Z.; Mellors, J. W. Antimicrob. Agents Chemother. 1993, 37, 875. (c) Jeong, L. S.; Schinazi, R. F.; Beach, J. W.; Kim, H. O.; Shanmuganathan, K.; Nampalli, S.; Chun, M. W.; Chung, W.-K.; Choi, B. G.; Chu, C. K. J. Med. Chem. 1993, 36, 2627. (d) Choi, W. B.; Yeola, S.; Liotta, D. C.; Schinazi, R. F.; Painter, G. R.; Davis, M.; St. Clair, M.; Furman, P. A. Bioorg. Med. Chem. Lett. 1993, 3, 693. (e) Belleau, B.; Brasili, L.; Chan, L.; DiMarco, M. P.; Zacharie, B.; Nguyen Ba, N.; Jenkinson, H. J.; Coates, J. A. V.; Cameron, J. M. Bioorg. Med. Chem. Lett. 1993, 3, 1723. (f) Frick, L. W.; St. John, L.; Taylor, L. C.; Painter, G. R.; Furman, P. A.; Liotta, D. C.; Furfine, E. S.; Nelson, D. J. Antimicrob. Agents Chemother. 1993, 37, 2285. (g) Wang, W.; Jin, H.; Mansour, T. S. Tetrahedron Lett. 1994, 35, 4739. (h) Austin, R. E.; Cleary, D. G. Nucleosides Nucleotides 1995, 14, 1803. (i) Breining, T.; Cimpoia, A. R.; Mansour, T. S.; Cammack, N.; Hopewell, P.; Ashman, C. Heterocycles 1995, 41, 87.
- (a) Reist, E. J.; Gueffroy, D. E.; Blackford, R. W.; Goodman, L. J. Org. Chem. 1966, 31, 4025.
 (b) Reist, E. J.; Fisher, L. V.; Goodman, L. J. Org. Chem. 1967, 32, 2541.
 (c) Huang, B.; Chen, B.; Hui, Y. Synthesis 1993, 769.
 (d) Altmann, K.-H. Tetrahedron Lett. 1993, 34, 7721.
 (e) Pickering, L.; Malhi, B. S.; Coe, P. L.; Walker, R. T. Nucleosides Nucleotides 1994, 13, 1493.
 (f) Altmann, K.-H.; Freier, S. M.; Pieles, U.; Winkler, T. Angew. Chem. Int. Ed. Engl. 1994, 33, 1654.
 (g) Pickering, L.; Malhi, B. S.; Coe, P. L.; Walker, R. T. Tetrahedron 1995, 51, 2719.
 (h) Rassu, G.; Zanardi, F.; Battistini, L.; Gaetani, E.; Casiraghi, G. J. Med. Chem. 1997, 40, 168.
- (a) Harnden, M. R.; Jarvest, R. L. Tetrahedron Lett. 1991, 32, 3863. (b) Harnden, M. R.; Jarvest, R. L. J. Chem. Soc., Perkin Trans. I 1991, 2073. (c) Mansour, T. S.; Jin, H. Bioorg. Med. Chem. Lett. 1991, 1, 757. (d) Lee, Y. H.; Kim, H. K.; Youn, I. K.; Chae, Y. B. Bioorg. Med. Chem. Lett. 1991, 1, 287. (e) Harnden, M. R.; Jarvest, R. L.; Parratt, M. J. J. Chem. Soc., Perkin Trans. I 1992, 2259.
- (a) Eva Ng, K.-m.; Orgel, L. E. J. Med. Chem. 1989, 32, 1754.
 (b) Peterson, M. L.; Vince, R. J. Med. Chem. 1991, 34, 2787.
- (a) Faury, P.; Camplo, M.; Mourier, N.; Trabaud, C.; Niddam, V.; Kraus, J.-L. *Bull. Soc. Chim. Fr.* 1996, 133, 553.
 (b) Rassu, G.; Zanardi, F.; Cornia, M.; Casiraghi, G. *Nucleosides Nucleotides* 1996, 15, 1113.
- 18. (a) Tronchet, J. M. J.; Iznaden, M.; Barbalat-Rey, F.; Dhimane, H.; Ricca, A.; Balzarini, J.; De Clercq, E. *Eru. J. Med. Chem.* **1992**, *27*, 555. (b) Tronchet, J. M. J.; Iznaden, M.; Barbalat-Rey, F.; Komaromi, I.; Dolatshahi, N.; Bernardinelli, G. *Nucleosides Nucleotides* **1995**, *14*, 1737.
- 19. Leggio, A.; Liguori, A.; Procopio, A.; Siciliano, C.; Sindona, G. *Tetrahedron Lett.* **1996**, *37*, 1277.
- (a) Xiang, Y.; Chen, J.; Schinazi, R. F.; Zhao, K. *Tetrahedron Lett.* 1995, 36, 7193. (b) Xiang, Y.; Gong, Y.; Zhao, K. *Tetrahedron Lett.* 1996, 37, 4877. (c) Xiang, Y.; Gi, H.-J.; Niu, D.; Schinazi, R. F.; Zhao, K. *J. Org. Chem.* 1997, 62, 7430.

- 21. Chiacchio, U.; Gumina, G.; Rescifina, A.; Romeo, R.; Uccella, N.; Casuscelli, F.; Piperno, A.; Romeo, G. *Tetrahedron* 1996, *52*, 8889.
- 22. (a) Xiang, Y.; Chen, J.; Schinazi, R. F.; Zhao, K. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1051. (b) Gi, H.-J.; Xiang, Y.; Schinazi, R. F.; Zhao, K. *J. Org. Chem.* **1997**, *62*, 88. (c) Li, P.; Gi, H.-J.; Sun, L.; Zhao, K. *J. Org. Chem.* in press.
- (a) Tronchet, J. M. J.; Zsély, M.; Capek, K.; Komaromi, I,; Geoffroy, M.; De Clercq, E.; Balzarini, J. Nucleosides Nucleotides 1994, 13, 1871.
 (b) Tronchet, J. M. J.; Zsély, M.; Sultan, N. Nucleosides Nucleotides 1994, 13, 2071.
 (c) Tronchet, J. M. J.; Kovacs, I.; Barbalat-Rey, F.; Dolatshahi, N. Nucleosides Nucleotides 1996, 15, 337.
- (a) Papchikhin, A.; Chattopadhyaya, J. Tetrahedron 1994, 50, 5279. (b) Hossain, N.; Papchikhin, A.; Plavec, J.; Chattopadhyaya, J. Tetrahedron 1993, 49, 10133. (c) Papchikhin, A.; Agback, P.; Plavec, J.; Chattopadhyaya, J. J. Org. Chem. 1993, 58, 2874. (d) Rong, J.; Roselt, P.; Plavec, J.; Chattopadhyaya, J. Tetrahedron 1994, 50, 4921.
- 25. Xiang, Y.; Schinazi, R. F.; Zhao, K. Bioorg. Med. Chem. Lett. 1996, 6, 1475.
- 26. Balzarini, J.; Karlsson, A.; Vandamme, A.-M.; Pérez-Pérez, M.-J.; Zhang, H.; Vrang, L.; Öberg, B.; Bäckbro, K.; Unge, T.; San-Félix, A.; Velázquez, S.; Camarasa, M.-J.; De Clercq, E. *Proc. Natl. Acad. Sci. U. S. A*. **1993**, *90*, 6952.

Biographical sketch

Shifeng Pan

Nduka M. Amankulor

Kang Zhao

Shifeng Pan received his BS. degree from Fudan University, Shanghai, P R of China, in 1993. After three years graduate study with Professor Tingwei Dong, he received his MS. degree in organic chemistry from the same university in 1996. He is currently a Ph.D. candidate under the direction of Professor Kang Zhao at New York University, working on synthesis of novel nucleoside analogues. He is now a recipient of MacCracken Fellowship from New York University. To date, he co-authored 10 publications.

Nduka Amankulor was born in Los Angeles, CA, in 1977. He is currently completing his final year of undergraduate studies at New York University with a focus on Neuroscience and Chemistry. His current research, under the supervision of Dr. Kang Zhao, involves the synthesis of protein tyrosine phosphatase (PTPase) inhibitors. His previous work on PTPase κ , under the supervision of Dr. Jan Sap (Sackler Institute, NYU Medical School) resulted in the elucidation of PTP κ 's mode of binding with E-Cadherin. In general, he is interested in the design and synthesis of artificial, biologically relevant molecules. Specifically, he is interested in the use of organic molecules as tools in investigating signal transduction pathways. His research activities have led to presentations at several venues, including the 37st Annual Meeting of the American Society for Cell Biology.

Kang Zhao received his undergraduate degree from Shandong University, P R of China, in 1982. He attended graduate school at Columbia University in 1983, where he received his Ph.D. (with Professor Gilbert Stork) in 1988. After two years as a postdoctoral fellow with Professor Gilbert Stork at Columbia University and two years as a Cystic Fibrosis Foundation Fellow with Professor Donald Landry at Columbia Medical School, he was appointed Assistant Professor at New York University. He is co-author of over 40 refereed journal publications that are related to the development of synthetic methods, with particular emphasis on N-O bond chemistry and glycosidation chemistry. He is the recipient of a Goddard Fellowship, an American Cancer Society Junior Faculty Research Award, and a NSF Faculty Early Career Development Award. He currently holds the positions of Visiting Professor of Medicine at Hunan Medical University and Columbia Medical School, Chair of the Chemical Sciences of the New York Academy of Sciences, and W. M. Keck Foundation Early Career Professor at New York University.